Hubble's Universe Unfiltered

  • November 24, 2014

    A Black Hole Visits Baltimore

    by Frank Summers

    [NOTE: This post is the fourth in a four-part series. Previous posts are: 1) Einstein's Crazy Idea, 2) Visual "Proof" of Gravitational Lensing, and 3) Gravitational Lensing in Action. The same posts, slightly modified, also appear on the Frontier Fields blog.]

    For the final part of this series of blog posts, let's bring things back to Earth. The demonstration of a physical process will always seem a bit arcane when using unfamiliar objects as the example. Most folks don't have a working relationship with galaxies, let alone the strange varieties one gets in the distant universe. Instead of taking the viewer into the universe, it can be more intuitive to bring the cosmic phenomenon closer to home.

    Suppose that, say, a black hole decided to take a short vacation. Perhaps it got tired of the enormous responsibilities of being such a tremendous distortion of space-time. It needed a weekend off to cool its jets (absurdly geeky pun intended - sorry). Around Baltimore, where I work, the black hole might go down to the Inner Harbor, enjoy the sights and activities, indulge in a crab feast, and leave completely rejuvenated. Now, while I haven't yet tried to visualize a black hole eating crabs, and the concomitant singularity eruptions due to Old Bay seasoning, we can approximate what tourists might have seen during the visit.

    This scientific visualization presents a black hole of about the mass of Saturn passing through Baltimore's Inner Harbor. The initial view from Federal Hill shows the usual boats, shops, and office buildings along the water. As the black hole passes across the harbor, the view of the background buildings is distorted due to gravitational lensing. Light is redirected such that, in the region around the singularity, imagery is flipped top/bottom and left/right, with multiple views of the same object. This transformation of a familiar skyline scene can help one imagine the transformation of unfamiliar galaxies in the distant universe.

    Note: As in the previous simulated lensing image, a simplified, planar approach of gravitational lensing is used for this visualization. However, in this case, the foreground objects were not removed. The visual distortion of ship's masts on the near side of the harbor would not occur. We humbly ask your indulgences.

    While in graduate school, I had to solve problems using the complex collection of general relativity equations - but only a few times. And all of those instances were for problems with enough symmetry that things could be considerably simplified. I gained an appreciation for the essential character, and some of the beauty, of the mathematics behind it. However, as stated in the first post in this series, the whole concept still has a feeling of weirdness.

    Perhaps that notion would have dissipated had I specialized in relativity. Instead, as I developed into a scientific visualization specialist, I've gotten to revisit things from a public presentation, rather than research, perspective. The visual allure of gravitational lensing can attract an audience for topics typically mired in equations. It shows how a simple magnifying glass can have a truly cosmic analogue. It helps explore the perspective changing shift in gravity from Newton's force to Einstein's geometric re-interpretation. It opens the pathway to deeper philosophical thoughts about the fabric of space-time and the very underpinnings of our universe. Now, that's quite the opportunity for an outreach astrophysicist like me.

    In this case, weird is cool.

  • August 2, 2014

    How deep can the Hubble Deep Field peer into the past?

    by Frank Summers

    Q: How deep can the Hubble deep field peer into the past?

    A: The most distant objects Hubble has seen are just over 13 billion light-years away. Because light takes one year to travel one light-year of distance, the light left these most distant objects over 13 billion years ago. We see them not as they are today, but as they were 13 billion years in the past. Astronomers have measured and calculated that the Big Bang occurred about 13.7 billion years ago, so we are seeing these objects about 500-700 million years after the beginning of the universe. If the universe were a 70-year-old woman, it would be like looking back to pictures of her when she was only 3 years old.

  • June 10, 2014

    Gravitational Lensing in Action

    by Frank Summers

    In my previous blog post, Visual "Proof" of General Relativity, I discussed how gravitational lensing demonstrates the effects of Einstein's theory of general relativity in a direct, visual manner. Images created by gravitational lenses show features that are not possible in Newton's version of gravity.

    Although seeing general relativity with your own eyes is kinda awesome, there's one unsatisfying aspect: you only see the result, not the process. Since you don't know exactly what those galaxies looked like before the gravitational lensing, it is hard to fully appreciate the magnitude of the distortions. We have no on/off switch for the mass of the galaxy cluster to be able to examine the un-lensed image and compare against the lensed one.

    But we can demonstrate the process of gravitational lensing through scientific visualization. The images above show a simulation of gravitational lensing by a galaxy cluster. On the left is an image of only the galaxies that belong to galaxy cluster Abell 2744; all of the foreground and background objects have been removed. On the right is a deep field image of galaxies. In the center is a simulation of how the galaxies of Abell 2744 would distort the galaxy images in the deep field.

    By carefully comparing galaxy images between the right and center panels, one can see how the un-lensed galaxies transform to their distorted lensed versions.  The elongated streaks and arcs in the center image generally come from compact, ellipse-shaped galaxies in the right image. But not all galaxies are changed, a fact easily seen by examining the larger, yellow galaxy in the lower right.

    The explanation comes from the details of the simulated lensing. The deep field used above is a portion of the Hubble Ultra Deep Field (HUDF), and includes only galaxies for which we have a good measure of their distance. Using those distances and the distance to Abell 2744, we were able to place the galaxies of Abell 2744 at their correct positions within the deep field. HUDF galaxies which are closer than the galaxy cluster would not be lensed, and appear the same in the right and center images. Only those galaxies behind the cluster were transformed by the simulated lensing. Thus, the central image provides a proper simulation of what would be seen if Abell 2744 suddenly wandered across the sky and ended up in the middle of the HUDF.

    I note that all of the background galaxies were combined into a single image at a set distance behind the cluster for simplicity. The full, and rather tedious, 3D calculation could have been performed, but was deemed unlikely to provide a significant visual difference for a public-level illustration. I further note that it is an occupational hazard of being a scientist that one feels compelled to provide such full-disclosure details.

    The really difficult challenge is to do the reverse of this simulation. Start with an image of gravitational lensing and then work out the mass distribution of the galaxy cluster from the distribution of streaks and arcs. But, hey, no one said being an astrophysicist was easy.

    In the final part of this series of blog posts, I'll provide a more down-to-earth example of gravitational lensing.

    [NOTE: This post is the third in a series of four, and is a slightly modified version of the same post on the Frontier Fields blog.]