Hubble's Universe Unfiltered

  • May 4, 2016

    May the Fourth Be With You

    by Frank Summers

    May 4th is celebrated as Star Wars Day across the internet. We who do "serious science" have always enjoyed the fictional universes of books and films, but the crossover to our work has generally been tangential.

    Not so this year! Last December, we jumped on the bandwagon and released an image with the headline "Hubble Sees the Force Awaken in a Newborn Star" (click on the accompanying thumbnail image to see it in detail). I like to refer to it as the "celestial lightsabers" image, as it bears a good resemblance to Darth Maul's double-bladed weapon. Hence, I can be fully justified in doing a Star Wars Day blog post about it.

    Examine the image for a while, and the big question one should ask is: How is it possible to get twin jets of material streaming at more than 100,000 miles an hour across over half a light-year of space?

    When a gas cloud collapses to form a star, the material condenses to the center and inevitably forms a disk. The disk is a simple result of the conservation of angular momentum, a.k.a. spin. The motions within a large cloud may have only a tiny bit of net spin, but when that material condenses, the spin is concentrated as well. A tiny spin across a long distance leads to a huge spin across a short distance. A disk around the newborn star is the result.

    In the inner edge of the disk, material falls onto the star. Not all of the infalling material is added to the star; some of it is expelled back outward. The directions perpendicular to the disk are the available paths for outflowing material. Hence, oppositely directed outflowing streams are to be expected.

    The remarkable feature is the thin collimation of those streams. The rapidly spinning disk contains ionized (electrically charged) material that carries along magnetic field lines. These magnetic fields become wrapped around the new star with twisting crossover points above and below the disk. Ionized material flowing along magnetic field lines can be ejected at high speed along two narrow openings in opposite directions.

    Herbig-Haro Object HH 47, observed by Hubble

    Herbig-Haro Object HH 47, as observed by Hubble

    The result is the twin jets seen in Herbig-Haro objects. The jets of HH 24 remain thinly coliimated for a long distance, creating the lightsaber resemblance. Many other HH objects, such as HH 47 pictured above, are more dispersed, puffier, and with large lobes at the end. These lobes indicate where the energy of the material is deposited into the interstellar gas. HH objects are relatively short-lived (thousands of years) and are moving at large enough speeds that Hubble has been able to measure the motion of HH clouds.

    A visualization with a 2D zoom and 3D flight to HH 24

    While I know of no scientific explanation of how a lightsaber is supposed to work in the Stars Wars universe, we have a pretty good idea of the physics behind the celestial lightsabers observed by Hubble. Star Wars Day becomes a great excuse to delve into Herbig-Haro objects. And that's part of what makes my job fun. Use the cool Hubble images to attract the public's attention, and then overlay a bit of scientific explanation. The universe is even more beautiful when you understand the forces behind it.

    Now, what do I do for Talk Like a Pirate Day? Arrr Arrr Lyrae variable stars, anyone?