Hubble's Panoramic View of a Turbulent Star-making Region

Hubble's Panoramic View of a Turbulent Star-making Region

Download Options

Fast Facts
News release ID: STScI-2012-01
Release Date: Apr 17, 2012
Image Use: Copyright
About this image

Several million young stars are vying for attention in this NASA Hubble Space Telescope image of a raucous stellar breeding ground in 30 Doradus, located in the heart of the Tarantula Nebula. Early astronomers nicknamed the nebula because its glowing filaments resemble spider legs.

30 Doradus is the brightest star-forming region visible in a neighboring galaxy and home to the most massive stars ever seen. The nebula resides 170,000 light-years away in the Large Magellanic Cloud, a small, satellite galaxy of our Milky Way. No known star-forming region in our galaxy is as large or as prolific as 30 Doradus.

The composite image comprises one of the largest mosaics ever assembled from Hubble photos and includes observations taken by Hubble's Wide Field Camera 3 and Advanced Camera for Surveys. The Hubble image is combined with ground-based data of the Tarantula Nebula, taken with the European Southern Observatory's 2.2-meter telescope in La Silla, Chile. NASA and the Space Telescope Science Institute are releasing the image to celebrate Hubble's 22nd anniversary.

Collectively, the stars in this image are millions of times more massive than our Sun. The image is roughly 650 light-years across and contains some rambunctious stars, from one of the fastest rotating stars to the speediest and most massive runaway star.

The nebula is close enough to Earth that Hubble can resolve individual stars, giving astronomers important information about the stars' birth and evolution. Many small galaxies have more spectacular starbursts, but the Large Magellanic Cloud's 30 Doradus is one of the only extragalactic star-forming regions that astronomers can study in so much detail. The star-birthing frenzy in 30 Doradus may be partly fueled by its close proximity to its companion galaxy, the Small Magellanic Cloud.

The image reveals the stages of star birth, from embryonic stars a few thousand years old still wrapped in cocoons of dark gas to behemoths that die young in supernova explosions. 30 Doradus is a star-forming factory, churning out stars at a furious pace over millions of years. Hubble shows star clusters of various ages, from about 2 million to about 25 million years old.

The region's sparkling centerpiece is a giant, young star cluster (left of center) named NGC 2070, only 2 million years old. Its stellar inhabitants number roughly 500,000. The cluster is a hotbed for young, massive stars. Its dense core, known as R136, is packed with some of the heftiest stars found in the nearby universe, weighing more than 100 times the mass of our Sun.

The massive stars are carving deep cavities in the surrounding material by unleashing a torrent of ultraviolet light, which is etching away the enveloping hydrogen gas cloud in which the stars were born. The image reveals a fantasy landscape of pillars, ridges, and valleys. Besides sculpting the gaseous terrain, the brilliant stars also may be triggering a successive generation of offspring. When the radiation hits dense walls of gas, it creates shocks, which may be generating a new wave of star birth.

The colors represent the hot gas that dominates regions of the image. Red signifies hydrogen gas and blue, oxygen.

Hubble imaged 30 separate fields, 15 with each camera. Both cameras were making observations at the same time. Hubble made the observations in October 2011.

For more information, contact:

Ray Villard
Space Telescope Science Institute, Baltimore, Md.

Astronomical, Dark Nebulae, Emission Nebulae, Globular Clusters, Hubble Telescope, Nebulae, Open Clusters, Star Clusters, Supernova Remnants


NASA, ESA, D. Lennon and E. Sabbi (ESA/STScI), J. Anderson, S. E. de Mink, R. van der Marel, T. Sohn, and N. Walborn (STScI), N. Bastian (Excellence Cluster, Munich), L. Bedin (INAF, Padua), E. Bressert (ESO), P. Crowther (University of Sheffield), A. de Koter (University of Amsterdam), C. Evans (UKATC/STFC, Edinburgh), A. Herrero (IAC, Tenerife), N. Langer (AifA, Bonn), I. Platais (JHU), and H. Sana (University of Amsterdam)