Release 504 of 1,061
Release date: Oct 19, 2005 1:00 PM (EDT)

NASA has enlisted the Hubble Space Telescope's unique "vision" capabilities for making a new class of science observations of the Moon that support future human exploration. Hubble's exquisite resolution and sensitivity to ultraviolet light, which is reflected off the Moon's surface materials, have allowed Hubble to begin to search for the presence of important minerals that may be critical for the establishment of sustained human presence on the Moon. Preliminary assessment of these new Hubble observations suggests new patterns in the abundance of titanium and iron oxides, both of which are sources of oxygen, a key ingredient for life, and an essential ingredient for human exploration. Hubble's Advanced Camera for Surveys imaged Aristarchus crater and nearby Schroter's Valley rille on Aug. 21, 2005. These images reveal fine-scale details of the crater's interior and exterior in ultraviolet and visible wavelengths at a scale of approximately 165 to 330 feet (50 to 100 meters) per picture element. These new ultraviolet-light observations, after being compared and calibrated against Hubble's ultraviolet-light observations of the Apollo 15 and 17 landing regions, will be used to quantify abundances of the titanium-bearing oxide ilmenite.

The Full Story
Release date: Oct 19, 2005

October 19, 2005

Erica Hupp/Dwayne Brown
Headquarters, Washington
(Phone: 202/358-1237/1726)

Susan Hendrix
Goddard Space Flight Center, Greenbelt, Md.
(Phone: 301/286-7745)

Ray Villard
Space Telescope Science Institute, Baltimore, Md.
(Phone: 410-338-4514)

PRESS RELEASE NO.: STScI-PR05-29

NASA'S HUBBLE LOOKS FOR POSSIBLE MOON RESOURCES

NASA is using the unique capabilities of the Hubble Space Telescope for a new class of scientific observations of the Earth's moon.

Hubble's resolution and sensitivity to ultraviolet light have allowed the telescope to search for important oxygen-bearing minerals on the moon. Since the moon does not have a breathable atmosphere, minerals, such as ilmenite (titanium and iron oxide), may be critical for a sustained human lunar presence. Ilmenite is a potential source of oxygen for breathing or to power rockets.

The new Hubble observations are the first high-resolution, ultraviolet images ever acquired of the moon. The images provide scientists with a new tool to study mineral variations within the lunar crust. As NASA plans future expeditions to the moon, such data, in combination with other measurements, will help ensure the most valuable sites are targeted for robotic and human missions.

"These observations of the moon have been a challenging and highly successful technological achievement for NASA and the Hubble team, since the telescope was not originally designed for lunar observations," said Jennifer Wiseman, program scientist for the Hubble at NASA Headquarters. "The images will inform both scientific studies of lunar geology and future decisions on further lunar exploration," she said.

Hubble's Advanced Camera for Surveys snapped ultraviolet and visible light images of known geologically diverse areas on the side of the moon nearest Earth. These included the Aristarchus impact crater and the adjacent Schroter's Valley. Hubble also photographed the Apollo 15 and 17 landing sites, where astronauts collected rock and soil samples in 1971 and 1972.

Scientists are comparing the properties of the rock and soil samples from the Apollo sites with the new Hubble images, and the Aristarchus region, which neither humans nor robotic spacecraft have visited. The Hubble observations of Aristarchus crater and Schroter's Valley will help refine researchers' understanding of the diverse, scientifically interesting materials in the region and to unravel their full resource potential.

"Our initial findings support the potential existence of some unique varieties of oxygen-rich glassy soils in both the Aristarchus and Apollo 17 regions. They could be well-suited for visits by robots and human explorers in efforts to learn how to live off the land on the moon," said Jim Garvin, chief scientist at NASA's Goddard Space Flight Center, Greenbelt, Md. Garvin is principal investigator for the project.

"While it will require many months before fully quantitative results can be developed, we already have evidence that these new observations will improve the precision by which we can understand materials such as ilmenite to help better inform exploration decisions," Garvin said.

Hubble's lunar observation analysis team included colleagues from Goddard and Cornell University, Ithaca, N.Y.; Brown University, Providence, R.I.; Northwestern University, Evanston, Ill.; the University of Pittsburgh.; and the University of Hawaii, Manoa.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. The Space Telescope Science Institute in Baltimore conducts Hubble science operations. It is operated for NASA by the Association of Universities for Research in Astronomy, Inc., Washington, under contract with Goddard.