Share

News Release Archive:

News Release 19 of 955

April 3, 2014 02:00 PM (EDT)

News Release Number: STScI-2014-22

Hubble Finds That Monster 'El Gordo' Galaxy Cluster Is Bigger Than Thought

Back

Image: Galaxy Cluster 'El Gordo' with Mass Map and X-ray

Galaxy Cluster 'El Gordo' with Mass Map and X-raySTScI-PRC2014-22b

Screen-use options: These files are created for viewing on your monitor

Print-use download options: These files are designed to fit on letter-size paper

Highest-quality download options
The best resolution available can be found here.

ABOUT THIS IMAGE:

This is a Hubble Space Telescope image of the most massive cluster of galaxies ever seen to exist when the universe was just half of its current age of 13.8 billion years. The cluster, catalogued as ACT-CL J0102-4915, contains several hundred galaxies swarming around under a collective gravitational pull. The total mass of the cluster, as refined in new Hubble measurements, is estimated to weigh as much as 3 million billion stars like our Sun (about 3,000 times the mass of our own Milky Way galaxy) — though most of the mass is hidden away as dark matter. The location of the dark matter is mapped out in the blue overlay. Because dark matter doesn't emit any radiation, Hubble astronomers instead precisely measure how its gravity warps the images of far background galaxies like a funhouse mirror. This allowed them to come up with a mass estimate for the cluster. The cluster was nicknamed El Gordo (Spanish for "the fat one") in 2012 when X-ray observations (shown in pink) and kinematic studies first suggested it was unusually massive for the time in the early universe when it existed. The Hubble data have confirmed that the cluster is undergoing a violent merger between two smaller clusters.

Object Names: El Gordo, ACT-CL J0102-4915

Image Type: Astronomical

Credit: NASA, ESA, J. Jee (University of California, Davis), J. Hughes (Rutgers University), F. Menanteau (Rutgers University and University of Illinois, Urbana-Champaign), C. Sifon (Leiden Observatory), R. Mandelbum (Carnegie Mellon University), L. Barrientos (Universidad Catolica de Chile), and K. Ng (University of California, Davis)

NEWS RELEASE IMAGES

All images from this news release:

To access available information and downloadable versions of images in this news release, click on any of the images below: