Black Hole-Powered Jet of Electrons and Sub-Atomic Particles Streams From Center of Galaxy M87
About This Image
Caption
Streaming out from the center of the galaxy M87 like a cosmic searchlight is one of nature's most amazing phenomena, a black-hole-powered jet of electrons and other sub-atomic particles traveling at nearly the speed of light. In this NASA Hubble Space Telescope image, the blue of the jet contrasts with the yellow glow from the combined light of billions of unseen stars and the yellow, point-like globular clusters that make up this galaxy.
At first glance, M87 (also known as NGC 4486) appears to be an ordinary giant elliptical galaxy; one of many ellipticals in the nearby Virgo cluster of galaxies. However, as early as 1918, astronomer H.D. Curtis noted a "curious straight ray" protruding from M87. In the 1950s when the field of radio was blossoming, one of the brightest radio sources in the sky, Virgo A, was discovered to be associated with M87 and its jet.
After decades of study, prompted by these discoveries, the source of this incredible amount of energy powering the jet has become clear. Lying at the center of M87 is a supermassive black hole, which has swallowed up a mass equivalent to 2 billion times the mass of our Sun. The jet originates in the disk of superheated gas swirling around this black hole and is propelled and concentrated by the intense, twisted magnetic fields trapped within this plasma. The light that we see (and the radio emission) is produced by electrons twisting along magnetic field lines in the jet, a process known as synchrotron radiation, which gives the jet its bluish tint.
M87 is one of the nearest and is the most well-studied extragalactic jet, but many others exist. Wherever a massive black hole is feeding on a particularly rich diet of disrupted stars, gas, and dust, the conditions are right for the formation of a jet. Interestingly, a similar phenomenon occurs around young stars, though at much smaller scales and energies.
At a distance of 50 million light-years, M87 is too distant for Hubble to discern individual stars. The dozens of star-like points swarming about M87 are, instead, themselves clusters of hundreds of thousands of stars each. An estimated 15,000 globular clusters formed very early in the history of this galaxy and are older than the second generation of stars, which huddle closer to the center of the galaxy.
The data were collected with Hubble's Wide Field Planetary Camera 2 in 1998 by J.A. Biretta, W.B. Sparks, F.D. Macchetto, and E.S. Perlman (STScI). The Hubble Heritage team combined these exposures of ultraviolet, blue, green, and infrared light in order to create this color image.
Credits
NASA and The Hubble Heritage Team (STScI/AURA)Keywords
About The Object | |
---|---|
Object Name | Messier 87, M87, NGC 4486, Virgo A |
Object Description | Giant Eliptical Galaxy (E1) |
R.A. Position | 12h 30m 49.42s |
Dec. Position | 12° 23' 27.99" |
Distance | About 16 Mpc (50 million light-years) |
Dimensions | The image is 31 arcseconds wide (about 7500 light years). The length of the jet is 5,000 light-years at optical wavelengths (100,000 light years at radio wavelengths). |
About The Data | |
Data Description | Principal Astronomers: J.A. Biretta, W.B. Sparks, F.D. Macchetto, E.S. Perlman (STScI) |
Instrument | HST>WFPC2 |
Exposure Dates | February 1998, Exposure Time: 55 minutes |
Filters | F300W (U), F450W (B), F606W (V), and F814W (I) |
About The Image | |
Color Info | Violet: F300W (U) Blue: F450W (B) Green: F606W (V) Red: F814W (I) |
About The Object | |
---|---|
Object Name | A name or catalog number that astronomers use to identify an astronomical object. |
Object Description | The type of astronomical object. |
R.A. Position | Right ascension – analogous to longitude – is one component of an object's position. |
Dec. Position | Declination – analogous to latitude – is one component of an object's position. |
Constellation | One of 88 recognized regions of the celestial sphere in which the object appears. |
Distance | The physical distance from Earth to the astronomical object. Distances within our solar system are usually measured in Astronomical Units (AU). Distances between stars are usually measured in light-years. Interstellar distances can also be measured in parsecs. |
Dimensions | The physical size of the object or the apparent angle it subtends on the sky. |
About The Data | |
Data Description |
|
Instrument | The science instrument used to produce the data. |
Exposure Dates | The date(s) that the telescope made its observations and the total exposure time. |
Filters | The camera filters that were used in the science observations. |
About The Image | |
Image Credit | The primary individuals and institutions responsible for the content. |
Publication Date | The date and time the release content became public. |
Color Info | A brief description of the methods used to convert telescope data into the color image being presented. |
Orientation | The rotation of the image on the sky with respect to the north pole of the celestial sphere. |