Hubble observations of very high-redshift galaxies: looking back 13 billion years...

Garth Illingworth, Rychard Bouwens

(University of California, Santa Cruz)

and the HUDF09 team
Hubble’s new Wide Field Infra-Red Camera (WFC3/IR) has revealed galaxies 13 billion years ago (at redshift z~8), just 600-700 million years from the big bang.

This is just 6 years after Hubble revealed z~6 galaxies (900 million years after the big bang) using the Advanced Camera for Surveys (ACS).

These redshift 7-8 galaxies are just 1/20 the size and <1% of the mass of the Milky Way, but are the seeds from which today’s great galaxies grew.

They have primordial characteristics – they are extremely blue in color and probably very deficient in the heavier elements.

They are vigorously forming stars and growing through collisions/mergers during the “reionization” epoch.

These galaxies were forming stars ~300 million years earlier, close to when the very first stars formed.
Hubble is pushed to the limit to find these galaxies

examples of the 16 redshift $z\sim7$ sources and 5 $z\sim8$ galaxies we found in the HUDF with the WFC3/IR and the ACS.

(Bouwens et al and Oesch et al papers)

galaxies are seen just 600-800 million years from the big bang

very competitive arena: three other teams have reported similar results at $z\sim7$-8 (Bunker et al; McLure et al; Yan et al)

galaxies in the first 700 million years  Garth Illingworth  www.firstgalaxies.org  gdi@ucolick.org
these galaxies are really faint

the highest redshift $z \sim 8$ galaxies

(Bouwens et al and Oesch et al papers)

ACS filters WFC3/IR

V i z Y J H

redshift

$z \sim 8.4$

$z \sim 8.7$

not detected detected

comparing the old and new Hubble infrared cameras

WFC3/IR NICMOS

redshift $z \sim 7$ galaxy images

Galaxies in the first 700 million years  Garth Illingworth  www.firstgalaxies.org  gdi@ucolick.org
these early galaxies are small and very blue

Bouwens//Illingworth et al paper

red

Color

-3

-2

-1

blue

2 3 4 5 6 7

Redshift

galaxies become very small at early times – 5% of Milky Way in size and <1% in mass – they are the seeds of today’s great galaxies

Oesch/Carollo et al paper

galaxies become very blue at early times – suggests that heavier elements are way less abundant than today

galaxies in the first 700 million years  Garth Illingworth  www.firstgalaxies.org  gdi@ucolick.org
these galaxies formed stars much earlier

Hubble and Spitzer results combine to show us that \( z \approx 8 \) galaxies were already forming some stars about three hundred million years earlier (at \( z > 10-11 \)) – close to the time of the first stars.

The blue line is fit to the data from a population of stars – the bump needed to fit the Spitzer data is what tells us that some stars in these \( z \approx 8 \) galaxies are 300 million years old!

\( z \approx 8 \) Spitzer images

\( z \approx 8 \) summed Spitzer images

\( 3.6 \, \mu m \quad 4.5 \, \mu m \)

(Labbé/Gonzalez et al papers)

\( \text{galaxies in the first 700 million years} \quad \text{Garth Illingworth} \quad \text{www.firstgalaxies.org} \quad \text{gdi@ucolick.org} \)
Our new results show that galaxies formed stars and assembled smoothly over the first 2 billion years. The history of the mass buildup in galaxies in the universe (Labbé/Gonzalez et al papers) and the history of star formation in galaxies in the universe (Bouwens/Illingworth et al papers) are illustrated in the graphs.

Galaxies in the first 700 million years: Garth Illingworth, www.firstgalaxies.org, gdi@ucolick.org
what these new observations tell us

Hubble’s new Wide Field Infra-Red Camera (WFC3/IR) has revealed galaxies 13 billion years ago (at redshifts z~7 and z~8), just 600-800 million years from the big bang

these galaxies are just 1/20 the size and <1% of the mass of the Milky Way, but they are the seeds from which today’s great galaxies grew

they have primordial characteristics – they are extremely blue in color and are probably very deficient in the heavier elements

they are vigorously forming stars and growing more and more massive through collisions/mergers

these galaxies were forming stars ~300 million years earlier, close to when the very first stars formed

these galaxies fall in the heart of the “reionization” epoch, but we still don’t know if galaxies could have reionized the universe!!

galaxies in the first 700 million years  Garth Illingworth  www.firstgalaxies.org  gdi@ucolick.org
These results are based on data from the Hubble WFC3/IR and ACS cameras obtained under proposal GO11563 by the HUDF09 team:

G. Illingworth (UCO/Lick Observatory; University of California, Santa Cruz)
R. Bouwens (UCO/Lick Observatory and Leiden University)
M. Carollo (Swiss Federal Institute of Technology, Zurich)
M. Franx (Leiden University)
I. Labbe (Carnegie Institution of Washington)
D. Magee (University of California, Santa Cruz)
P. Oesch (Swiss Federal Institute of Technology, Zurich)
M. Stiavelli (STScI)
M. Trenti (University of Colorado, Boulder)
P. van Dokkum (Yale University)

Credit (NASA/STScI press release):

NASA, ESA, G. Illingworth and R. Bouwens (University of California, Santa Cruz), and the HUDF09 Team.

galaxies in the first 700 million years  Garth Illingworth  www.firstgalaxies.org  gdi@ucolick.org
## redshift vs age

<table>
<thead>
<tr>
<th>z (redshift)</th>
<th>millions of years since the big bang</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3300</td>
</tr>
<tr>
<td>3</td>
<td>2200</td>
</tr>
<tr>
<td>4</td>
<td>1600</td>
</tr>
<tr>
<td>5</td>
<td>1200</td>
</tr>
<tr>
<td>6</td>
<td>950</td>
</tr>
<tr>
<td>7</td>
<td>750</td>
</tr>
<tr>
<td>8</td>
<td>650</td>
</tr>
<tr>
<td>9</td>
<td>550</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>11</td>
<td>400</td>
</tr>
</tbody>
</table>

## galaxies at z~8

*Hubble Ultra Deep Field • Infrared
Hubble Space Telescope • WFC3/IR*

*NASA, ESA, G. Illingworth (UCO/Lick Observatory and University of California, Santa Cruz), and the HUDF09 Team*